Day 2 Statistics - Mark Scheme

Question 1

8(a)	Let X be the random variable the number of customers asking for water.					
(i)	X~B(10,0.6)	<i>Y</i> ∼B(10,0.4)			B1]
	$P(X=6) = (0.6)^6 (0.4)^4 \frac{10!}{6!4!}$	$P(Y=4) = (0.4)^4 (0.6)^6 \frac{10!}{6!4!}$			M1	
	= 0.2508	= 0.2508		awrt 0.251	A1]
(ii)	$X \sim B(10,0.6)$ P(X < 9) = 1 - (P(X = 10) + P(X = 9))		$Y \sim B(10,0.4)$ $P(X < 9) = 1 - P(Y \le 1)$		$=$ $_{\mathrm{M1}}$	
	$P(X < 9) = 1 - (P(X = 10) + P(X = 10)^{-1})$ $= 1 - (0.6)^{10} - (0.6)^{9} (0.4)^{1}$	10! 9!1!	= 1 - 0.0464			
	= 0.9536		= 0.9536	awrt 0.954	A1	
(b)	$X \sim B(50,0.6)$ $Y \sim B(50,0.4)$ B(Y < y) > 0.0	(50,0.4)				(5)
	$P(X < n) \ge 0.9 P(Y > 50 - n) \ge 0.9 P(Y \le 50 - n) \le 0.1 50 - n \le 15$	or $P(X < 34) = 0.8439$ awrt 0.844 P(X < 35) = 0.9045 awrt 0.904/0.905			M1	1
	$n \ge 35$ $n = 35$				A1	(3)
						otal 8

[for part b you can answer a different way]

Question 2

2. (a) Let X be the random variable the number of faulty bolts
$$P(X \le 2) - P(X \le 1) = 0.0355 - 0.0076 \quad \text{or} \quad (0.3)^2 (0.7)^{18} \frac{20!}{18!2!}$$
 M1
$$= 0.0279 \qquad = 0.0278 \qquad \text{A1}$$
 (2)
$$1 - P(X \le 3) = 1 - 0.1071 = 0.8929 \qquad \text{M1}$$
 A1
$$= 0.8929 \qquad \text{Or} \quad 1 - (0.3)^3 (0.7)^{17} \frac{20!}{17!3!} - (0.3)^2 (0.7)^{18} \frac{20!}{18!2!} - (0.3)(0.7)^{19} \frac{20!}{19!1!} - (0.7)^{20}$$
 (c)
$$\frac{10!}{4!6!} (0.8929)^6 (0.1071)^4 = 0.0140. \qquad \text{M1A1}\sqrt{\text{A1}}$$
 (3)

[check mark scheme for correct final answers do not worry about the alternative methods they have used]